
Hierarchical Policy Delegation in
Multiple-Authority ABE

Peng Wang and Chinya Ravishankar

Department of Computer Science and Engineering
University of California, Riverside

{wangpe, ravi@cs.ucr.edu}

Abstract. We present HM-ABE, a hierarchical multi-authority attribute-
based encryption scheme with policy delegation, that generalizes current
work significantly. Current methods require encryptors to build cipher-
text access policies themselves, using attributes published by authority
domains. This causes problems, both since authorities may not publish
sensitive attributes, and since users may not understand their internal
policies. We permit encryptors to delegate parts of their access policies
to authorities, who can construct appropriate policies on their behalf,
using sensitive attributes, if needed. Delegation can be recursive.
Delegation helps encryptors build more accurate access policies, espe-
cially when they must include attributes from multiple authorities. HM-
ABE greatly reduces the chances that ineligible users gain access to data,
or that eligible users are denied. Delegation lets authorities hide sensitive
attributes, while still allowing users indirect access to their semantics.
We show that HM-ABE achieves recursive attribute delegation, selective
attribute hiding, and prove that it is secure.

Keywords: Attribute-based encryption, policy delegation, multiple au-
thorities.

1 Introduction

Standard public-key encryption associates a ciphertext with a single public
key, so only users holding the matching private key can decrypt the cipher-
text. Attribute-Based encryption (ABE) [1–6] is a more powerful approach that
permits expressive ciphertext access policies defining which combinations of at-
tributes empower users to decrypt ciphertexts. Access policies in ABE can in-
corporate multiple attributes, and, or and threshold gates. In Ciphertext-Policy
ABE (CP-ABE) [1,7], each user holds a set of attributes, and each ciphertext is
associated with an access policy, expressed as a Boolean formula over attributes.
A central authority (CA) publishes the public key corresponding to each at-
tribute, for use by encryptors in creating ciphertexts. Each user is granted a
capability (which we call a warrant) corresponding to each attribute she holds
by the authority maintaining the attribute. Only decryptors whose attributes
satisfy the access policy can decrypt the ciphertext.

2 Peng Wang and Chinya Ravishankar

But every coin has two sides. Expressive policies facilitate fine-grained access
control but make policy building difficult. Current CP-ABE schemes are hard
to use and error-prone; they require encryptors, who may be common end-users,
to master complex policy-making rules, and build policies themselves. Patients
building access policies for encrypted Personal Health Records (PHRs), for exam-
ple, must specify who may decrypt these PHRs through carefully crafted Boolean
expressions over user attributes. However, patients may not have enough medical
knowledge to build right access policies.

The emergence of Multi-authority Attribute-Based Encryption (M-ABE) [8–
11] complicates matters considerably. M-ABE permits multiple authorities, each
maintaining its own set of attributes, and publishing public keys for them. Each
authority is allowed to have its own rules for how its attributes are to be used
in building policies. Encryptors in M-ABE may have to build policies consistent
across several domains, and must master internal rules for these authorities. This
is hard even for experts, and simply impossible for most users.

Another problem of current M-ABE schemes is that authorities may see
some attributes as too sensitive to publish public keys or policy building rules
for these attributes. Consider some companies cooperate to provide services to a
large number of customers, who for privacy reasons, submit encrypted requests
for service. Each company has its own authority and maintains its attributes.
Customers’ access polices may contain attributes from several authorities. In a
standard implementation of M-ABE, customers would directly encode, in the
access policy for each request, the attributes of the service personnel (or groups)
responsible for handling that request. But this is clearly unreasonable. Customers
should not be required to understand the details of how each type of request is
handled within each company. This approach also leaks information on each
company’s internal processes and structures, perhaps even compromises trade
secrets.

Access policies based on the Linear Secret Sharing Scheme (LSSS) of [12]
are currently regarded as the most expressive [2,7]. In current M-ABE schemes,
only [8, 13] support such access policies.

1.1 Our Contributions

We present a new Hierarchical Multi-Authority ABE scheme (HM-ABE) based
on decentralized ABE (DABE) [8] to address these issues. We preserve all of
DABE’s advantages, and enhance it, adding policy delegation and attribute hid-
ing.

Policy delegation allows an encryptor to delegate the task of building part of
her policy to a trusted authority, using attributes it controls. Authorities in HM-
ABE may publish delegated attributes, to serve as placeholders for access policies
delegated to them. Encryptors can use delegated attributes in their policies.
Authorities then build their own sub-policies to replace such delegated attributes.
Encryptors securely send high-level descriptions of their intended policies to
these authorities so they can build the right sub-policies. Such descriptions are
high-level and non-formal, and sufficient only for policy-building.

Hierarchical Policy Delegation in Multiple-Authority ABE 3

AND

AND

OR

OR

AND

Encryptor

OR

...

warrants

Decryptor

Public domain Public keys of

open attributes

Obtain public keys for encryption

Public keys

Ciphertexts
Ciphertext

AU1

AU2

AU3

AU1 AU2 AU3 AUk

rattr
1

dattr
2

rattr
3

dattr
4

rattr5 dattr6 rattr
7

rattr
8

rattr
9

rattr
10

:

: hidden attribute irattr i

Fig. 1: The model of HM-ABE

Attribute hiding in HM-ABE lets authorities safeguard sensitive attributes
by selectively publishing or hiding any of their local attributes. No public key is
published for a hidden attribute, and only the authority managing the hidden
attribute can use the hidden attribute’s public key in encryption. Only decryp-
tors explicitly authorized with the warrant for a hidden attribute can recognize it
in polices. Encryptors access hidden attributes indirectly through policy delega-
tion. Authorities can use policy delegation to use sensitive attributes in internal
sub-policies, without their becoming public.

HM-ABE is significantly harder to prove correct than DABE, since the secu-
rity game used in the proof is more complex, and HM-ABE supports recursive
delegation. Nonetheless, we succeed in proving that HM-ABE is secure, even
given a more powerful adversary.

HM-ABE is the only M-ABE scheme having features such as policy delega-
tion, and attributing hiding. HM-ABE is based on DABE, and supports LSSS-
based access policies too. [13] is another M-ABE scheme supports LSSS-based
policies, but it does not have the other features of HM-ABE. Other M-ABE
schemes [9,11] do not even support LSSS-based access policies. Besides, schemes
like [9, 13] require the existence of trusted CA(s) which cannot be corrupted,
while our scheme and DABE do not have this restriction.

The rest of the paper is organized as follows. The model of HM-ABE appears
in Sec. 2. Sec. 3 discusses preliminaries. We describe the differences between HM-
ABE and DABE in Sec. 4. Sec. 5 presents our scheme. Related work appears in
Sec. 7. Sec. 8 concludes the paper. We present the security proof of HM-ABE in
Appendix.

4 Peng Wang and Chinya Ravishankar

2 Overview of Our Scheme

Our scheme consists of two kinds of entities: users and authorities. Users may be
encryptors or decryptors, and are known by global user identifiers (UIDs). Users
have attributes, which are numbered. Authorities manage attributes and their
assignment to users. They publish public keys for open attributes for encryptors
to use. Open attributes can be used in an access policy by any encryptor. Nothing
is published for hidden attributes. A hidden attribute may be used only by the
authority managing it, in its sub-policies. For each attribute i that it manages,
an authority generates a master secret key σi, and publishes the matching public
key πi if i is open. If user UID holds attribute i, he gets a warrant ϖUID,i from
the authority managing attribute i. The authority computes ϖUID,i from σi and
UID.

Authorities also handle delegation requests sent from encryptors or other
authorities. Encryptors build policies using attributes they know, and encrypt
their data based on these policies. Decryptors will decrypt ciphertexts using
warrants they have been granted.

Attributes may be regular or delegated . Regular attributes describe users, and
correspond to attributes as in current M-ABE schemes. A delegated attribute
serves as a proxy for the sub-policy an authority designs for an encryptor or
another authority. Encryptors may indirectly use hidden attributes through us-
ing delegated attributes in their policies since authorities can build sub-policies
including their hidden attributes.

Fig. 1 shows the model of HM-ABE. Let rattri and dattrj denote regular
attribute i and delegated attribute j. Policies are encoded as access structures,
which are boolean formulas over attributes. Access trees are equivalent struc-
tures, whose leaves are attributes and internal nodes are and or or gates. The
access structure created by the encryptor is called the main access structure.

In Fig. 1, the encryptor has specified the main access structure (rattr1 or dattr2)
and (rattr3 and dattr4). She first obtains attribute public keys stored publicly,
and encrypts the data with the public keys of regular attributes rattr1 and rattr3.
She publishes these ciphertexts, say in the cloud. Decryptors holding rattr3 can-
not decrypt the ciphertext, since they hold no warrant for the delegated attribute
dattr4. They must wait for AU2 to replace dattr4 by a sub-policy.

The encryptor then solicits the help of AU1 and AU2, sending them descrip-
tions of her desired policy, encrypted with the public keys of delegated attributes
dattr2 and dattr4, respectively. AU1 and AU2 may receive different policy de-
scriptions. Each of them decrypts the description, and builds access sub-policies
appropriate to its domain, in the form of access sub-structures or access sub-
trees. Each authority creates the ciphertext for its sub-structure, and sends the
ciphertext to the cloud.

Delegated attributes are replaced by the corresponding access sub-structures.
dattr2 is replaced by (rattr5 or dattr6) within AU1, and dattr4 by (rattr7 and rattr8)
within AU2. Here rattr8 is a hidden attribute. A delegated attribute in an access
sub-structure can also be replaced by a sub-structure. Thus, dattr6 is replaced by
(rattr9 and rattr10) within AU3. The ciphertext is now associated with a more

Hierarchical Policy Delegation in Multiple-Authority ABE 5

complex access structure called a complete access structure containing thirteen
nodes, while the main structure contained only seven. Moreover, the new policy
uses hidden attributes, which are unavailable to the encryptor without delega-
tion.

A user satisfies an access structure under the following conditions. Each at-
tribute in the access structure is treated as a Boolean true if and only if it is also
held by the user. The access structure is satisfied if and only if the corresponding
Boolean expression evaluates to true.

3 Preliminaries and Overview

3.1 Access Structures

Let U = {i1, i2, . . . , in} be a set of attributes. A collection A ⊆ 2U is monotone
if whenever B ⊆ C and B ∈ A, we also have C ∈ A.

Definition 1 An access structure is a monotone collection A of non-empty sub-
sets of U . The sets in A are the authorized sets. All other sets are unauthorized.

3.2 Bilinear Maps

Let G and GT denote two multiplicative cyclic groups of order N . In HM-ABE,
N is the product of three distinct primes. Let g be a generator of G, and e :
G×G → GT be a bilinear map with the following properties:

1. Bilinearity : for all u, v ∈ G and a, b ∈ ZN , we have e(ua, vb) = e(u, v)ab.
2. Non-degeneracy : e(g, g) ̸= 1.
3. Computability : There is an efficient algorithm to compute e(u, v) for any

u, v ∈ G.

3.3 Linear Secret-Sharing Schemes (LSSS)

We use the definitions of LSSS in [12]:

Definition 2 Let the attributes in access structure A be from U . A secret sharing
scheme Λ for A is linear (over ZN) if

1. The shares of the attributes form a vector over ZN .
2. There is an l×m share-generating matrix A and a function ρ mapping row

numbers in A to attributes in U . To share secret s ∈ ZN , we first randomly
choose r2, . . . , rm ∈ ZN , and form v = (s, r2, . . . , rm)T . The l shares of s
according to Λ are given by the vector Av. If [Av]x denotes the xth element
in Av, [Av]x is the secret share belonging to attribute ρ(x). [8] shows how to
obtain A and ρ from A.

6 Peng Wang and Chinya Ravishankar

Every LSSS Λ = (A, ρ) has the linear reconstruction property. Let S ∈ A be
an authorized set, and I ⊂ {1, 2, . . . , l} be defined as I = {x : ρ(x) ∈ S}. Let
[A]x denote row x of A. There are constants {cx ∈ ZN}x∈I with

∑
x∈I cx[A]x =

(1, 0, . . . , 0). If {λx}x∈I are the shares of s corresponding to attributes in S, we
have

∑
x∈I cxλx = s. These cx can be found in time polynomial in the size of

the matrix A.

3.4 Outline Of DABE

We briefly describe DABE [8]. Let p1, p2, p3 be three distinct large primes,
and N = p1p2p3. Let G and GT denote two cyclic groups of order N , and
e : G × G → GT denote a bilinear map. Let Gpi denote the subgroup of order
pi in G for 1 ≤ i ≤ 3, and Gpipj

denote the subgroup of order pipj in G for
1 ≤ i < j ≤ 3. Gp1 is used in the construction of DABE. The other groups
are used in proofs. Let g1 be a generator of Gp1 . Define ε = e(g1, g1). DABE
operates as follows. Let A be an access structure. Let T be its access tree form,
with its leaves representing attributes.

The Basic Idea A encryptor E encrypts message M by choosing a random
secret s ∈ ZN and obtain M ’s ciphertext as CM = Mεs. Any user who can
recover εs can recover M = CM/εs. DABE implements the policy encoded into
T by using it to dictate who can recover εs, as follows.

Let Λ = (A, ρ) be an LSSS matching T’s structure. If εs is shared under Λ,
the linear reconstruction property guarantees efficiently computable cx, λx for
each attribute ρ(x) represented by a leaf in T, such that

∑
x∈I cxλx = s for any

authorized set S and corresponding I = {x : ρ(x) ∈ S}. Since Λ is public, any
user can efficiently compute the cx from A.

Let us give ελx to each user holding attribute ρ(x). A user who holds all
the attributes in an authorized set S can compute {cx}x∈I from A, followed by∏

x∈I

(
ελx

)cx
= ε

∑
x∈I λxcx = εs. Hence, he can recover εs and subsequently,

message M , if and only if he holds all attributes in an authorized set.

Preventing Collusions This method is secure against individual users, but
if users who can jointly cover an authorized set S collude, they can recover εs

by pooling ελx values. Collusions are prevented by encoding user UIDs with the
attribute “shares” ελx as follows.

Let 0 be shared under Λ, and the share corresponding to attribute ρ(x) be
ωx. Let H denote a hash function that maps global identities UID to elements of
G. Define εUID = e(H(UID), g1) for each user UID. If user U1 has attribute ρ(x),
he gets ελx · εωx

U1
. Now, if user U1 holds all attributes in authorized set S, he can

compute
∏

x∈I

(
ελxεωx

U1

)cx
= ε

∑
x∈I λxcx · ε

∑
x∈I ωxcx

U1
. Since the ωx are all shares

of 0 under Λ,
∑

x∈I ωxcx = 0, and the above expression reduces to εs. However,

collusion between users U,V is now ruled out, since ελxεωx

U and ελx′ ε
ωx′
V do not

combine in the above manner.

Hierarchical Policy Delegation in Multiple-Authority ABE 7

Setup:
Let A denote the adversary and C denote the challenger. C initializes a set U of at-
tributes and a set S of authorities. A selects a set S ′ ⊂ S of corrupted authorities. A
gets public keys of all attributes.
Phase 1:
A requests and gets from C a series of warrant ϖUID,i, for UIDs and attributes i of A’s
choice.
Challenge Phase:
A creates an access structure A such that A cannot satisfy A using just the ϖUID,i he
obtained in Phases 1 and 2, and those that corrupted authorities can generate.
A creates two messages M0, M1. C chooses a bit β, encrypts Mβ under A, and sends
the ciphertext to A.
In HM-ABE’s security games, A has all abilities of the adversary in DABE’s security
game, besides, A obtains the security shares λx, ωx for each attribute ρ(x) controlled
by corrupted authorities. In DABE’s security games, A does not have these shares.
Phase 2:
A asks C for more warrants ϖUID,i.
Guess:
A outputs a guess β′ for β, and wins if β′ = β.

Game 1: General structure of security games of DABE and HM-ABE

Definition 3 We call each ελxεωx

U value a U-share of secret s for attribute i =
ρ(x), denoting it as s⟨U,i⟩.

4 From DABE to HM-ABE

We choose DABE as the base to build our scheme, and encryption and decryption
in our scheme mirror DABE. The security games of HM-ABE are significantly
more complex than those of DABE because of our added features. Proving these
features are secure is difficult. We describe how to achieve our new features in
DABE to obtain HM-ABE in the following.

4.1 Handling Delegation

As shown in Sec. 3.4, a decryptor needs to combine all U-shares of attributes
in an authorized set to generate εs. Since a policy may incorporate sub-policies
from several authorities, we must ensure U-shares can be combined correctly,
whether they originate from the encryptor or from various authorities.

We solve this problem differently from DABE. In both schemes, the encryptor
creates a ciphertext using a secret s, and generates shares λx and ωx of s for each
attribute ρ(x) used in the access policy. In DABE, these shares are embedded
into the policy ciphertext, but not passed directly to any entity. In contrast, we
pass both λx, ωx for a delegated attribute ρ(x) directly to the authority that
controls ρ(x).

Say encryptor E delegates a sub-policy to authority AUj via delegated at-
tribute δ. E encrypts message M with secret s, specifying δ in his LSSS Λ =

8 Peng Wang and Chinya Ravishankar

(A, ρ). Let ρ(x) = δ. He creates a policy description PolM,δ, gets the attribute
shares λx, ωx, and encrypts PolM,δ, λx, ωx by δ’s public key πδ. Then the
encrypted message is sent to AUj . Please note here that E directly gives se-
crets λx, ωx to AUj , while in DABE, the adversary can only recover a U-share
s⟨U,δ⟩ = ελxεωx

U for any user ID U .
AUj creates a local access structure Aj and LSSS Λj for this delegation, in

line with PolM,δ and AUj ’s policies, and shares λx, ωx under Λj . As Section 5
shows, a decryptor U who satisfies the access structure Aj can recover s⟨U,δ⟩.
Delegation can be recursive.

Directly giving authorities secret shares λx, ωx enables policy delegation but
complicates the security game. The boxed figure Game 1 shows the overall struc-
ture of the security games of DABE and HM-ABE. They are different in the
challenge phase, where the adversary obtains secret shares λx, ωx of delegated
attributes controlled by corrupted authorities in the security game of HM-ABE
while he cannot in the security game of DABE. We must prove that HM-ABE
is secure even if the adversary is more powerful.

Another challenge is that HM-ABE allows hierarchical delegation, so one
authority may delegate a policy to another authority. This feature does not
exist in DABE. We must prove that hierarchical delegation does not compromise
security. We prove this in two steps in Appendix. First, we prove that HM-ABE
is secure when no delegation is allowed. We show in this case that it is safe to
release λx and ωx to authorities. Next, we prove inductively that HM-ABE is
secure with an arbitrary number of recursive delegations.

4.2 Handling Hidden Attributes

We achieve attribute hiding by modifying the function ρ for hidden attributes
as follows. For each row [A]x in A, if x is associated with an open attribute i,
ρ(x) will map x to the corresponding attribute’s ID ρ(x) = i. Let CM be the
main ciphertext and hC() be a hash function. If x is associated with a hidden
attribute i, we define ρ(x) = hC(CM ||i), where || denotes concatenation. Only
users holding the warrant for i are given i’s ID, and can know that the row x is
associated with attribute i.

5 Construction of HM-ABE

For convenience, we associate an attribute v̂ with each node v in an access tree
T. If v is a leaf, v̂ is a regular or delegated attribute. If v is an internal node, v̂ is
a virtual attribute, which we will find useful in the exposition. The root of tree
T is associated with the virtual attribute T̂.

Definition 4 A user U satisfies an access tree T for a secret encryption key s,
if the following holds.

1. If T consists of a single node v (a leaf), he obtains his U-share s⟨U,v̂⟩ of s
for attribute v̂.

Hierarchical Policy Delegation in Multiple-Authority ABE 9

2. If T is an OR node with children L and R, satisfies either L or R. In these
cases, respectively, T’s U-share is s⟨U,T̂⟩ = s⟨U,L̂⟩, or s⟨U,T̂⟩ = s⟨U,R̂⟩.

3. If T is an AND node with children L and R, satisfies both L and R. Now,
s⟨U,T̂⟩ = s⟨U,L̂⟩ · s⟨U,R̂⟩.

As described in Sec. 3, we apply linear secret sharing over access structures
defined over attributes, ensuring that a user can recover a secret only if he has
U-shares for all attributes in some authorized set.

5.1 Notation and Algorithms

Let Oj and Cj be the set of open and hidden attributes managed by authority
AUj , and let Uj = Oj ∪ Cj . Let O =

∪
Oj be the set of all open attributes,

and R,D ⊆ O be the set of regular and delegated attributes, respectively. Let
A and Aj denote the main access structure created by the encryptor and the
sub-structure created by AUj . Let Λ = (A, ρ) and Λj = (Aj , ρj) denote LSSS
schemes defined for A and Aj , respectively.

For each attribute i, we create a pair (σi, πi), where σi is a master secret
key and πi is an attribute public key. All σi are kept secret. πi is published if i
is open. Let Σj = {σi| i ∈ Uj} and Πj = {πi| i ∈ Uj} be the set of secret keys
and public keys for all attributes AUj manages. Let Π =

∪
Πj be the set of all

public keys. We use the following algorithms.

Global Initialization Two cyclic groups G, GT of order N = p1p2p3 are
selected based on the the security parameter κ. e : G × G → GT is a bilinear
map. The set Γ of global public parameters comprises N and a generator g1 of
subgroup Gp1 of G. A hash function H : {0, 1}∗ → G that maps global identities
UID to elements of G is published. Another hash function hC : {0, 1}∗ → ZN

that maps the concatenation of main ciphertexts and attribute identities CM ||ID
to elements of ZN is also published.

Authority Initialization For each attribute i ∈ Uj that it manages, AUj

randomly chooses σi = (αi, χi) ∈ Z2
N as its master secret key, kept secret for all

i. If i is open, both i and its public key πi = (e(g1, g1)
αi , gχi

1) are published. If i
is hidden, its public key and ID will not be published, but a hash hC(CM ||i) is
published in encryption, as described in Section 3.4.

Warrants A user D who holds attribute i gets a warrant for i, computed as
ϖD,i = gαi

1 H(D)χi . Warrants are used to recover the U-shares s⟨D,i⟩. If i is
hidden, the user holding the warrant for i also gets attribute i’s ID.

Main Encryption Algorithm Let the LSSS of the main access structure be
Λ = (A, ρ). To encrypt message M , choose a random s ∈ ZN and generate
random vectors v ∈ Zm

N with s as its first entry and w ∈ Zm
N with 0 as its first

10 Peng Wang and Chinya Ravishankar

How E encrypts message M :
Given access structure A and LSSS Λ = (A, ρ), pick a random key s. Compute
ciphertext CM = Me(g1, g1)

s.
For each attribute i = ρ(x) in the access structure A, compute the triple
(Y1,x, Y2,x, Y3,x), and store with the leaf in T corresponding to attribute i.

How D decrypts ciphertext CM :
For each attribute i = ρ(x) that D holds in access tree T, use warrant ϖD,i to decrypt
the triple (Y1,x, Y2,x, Y3,x) to get the U-share s⟨D,i⟩. Aggregate the s⟨D,i⟩, proceeding
up the tree, and recover e(g1, g1)

s. Compute M = CM/e(g1, g1)
s.

Algorithm 1: Outline of Encryption and Decryption.

entry. Let λx = [A]x · v, ωx = [A]x · w. Randomly select rx ∈ ZN . We generate
CM , the actual ciphertext for M , as well as a triple (Y1,x, Y2,x, Y3,x) for each
regular attribute i = ρ(x) in A. These triples will yield the U-shares s⟨D,i⟩ for
each attribute i when decrypted with the warrant ϖD,i, and are associated with
the leaf of the access tree T corresponding to attribute i.

CM = Me(g1, g1)
s, Y1,x = e(g1, g1)

λx+rxαρ(x) (1)

Y2,x = grx1 , Y3,x = g
ωx+rxχρ(x)

1

Encryptor’s use of Delegation Let encryptor E’s policy use attribute δ del-
egated by AUj . Let PolM,δ be a description of the policy E delegates to AUj

via δ under the LSSS Λ = (A, ρ). Let ρ(x) = δ. E chooses a random qx ∈ ZN

and encrypts ∆M,δ = {PolM,δ||(λx, ωx)} with a new generated symmetric key
KM,δ. KM,δ then is encrypted with the public key πδ. Let ⟨∆M,δ⟩KM,δ

denote the
message ∆M,δ encrypted by the symmetric key KM,δ. E obtains the delegation
ciphertext Y ′

M,δ = (Y ′
1,x, Y

′
2,x, Y

′
3,x) as follows.

Y ′
1,x = ⟨∆M,δ⟩KM,δ

(2)

Y ′
2,x = KM,δe(g1, g1)

qxαρ(x) , Y ′
3,x = gqx1

Processing delegations Let authority AUj receive the encrypted delegation
messages Y ′

1,x, Y
′
2,x, Y

′
3,x in Eqn. 3. AUj first recovers KM,δ as:

KM,δ =
Y ′
2,x

e(Y ′
3,x, g

αρ(x)

1)
=

KM,δe(g1, g1)
qxαρ(x)

e(gqx1 , g
αρ(x)

1)
(3)

Then AUj uses KM,δ to decrypt Y ′
1,x, and obtains ∆M,δ = {PolM,δ||(λx, ωx)}.

A local access structure Aj and an LSSS Λj = (Aj , ρj) are created as per
PolM,δ. For each row [Aj]y of Aj , let i be the attribute associated with [Aj]y. If i
is a hidden attribute, ρj(y) = hC(CM ||i), otherwise ρj(y) = i. Let Aj be lj ×mj .
As before, we create triples to allow decryptors to recover their U-shares for each
attribute. Choose random vectors vj , uj ∈ Zmj

N such that vj and uj have λx and

Hierarchical Policy Delegation in Multiple-Authority ABE 11

ωx as their first entries, respectively. Let λy = [Aj]y · vj and ωy = [Aj]y · uj . For
each row [Aj]y of Aj , choose a random ry ∈ ZN . The triples are

Z1,y = e(g1, g1)
λy+ryαi , Z2,y = g

ry
1 , (4)

Z3,y = g
ωy+ryχi

1

There is no CM . U-shares are our only concern.

Decryption algorithm Let A and {Aj} denote the main access structure and
all sub-structures associated with the ciphertext. The decryptor D first builds the
complete access structure A∗, replacing delegated attributes with sub-structures.
If D’s attributes satisfy A∗, he first generates his U-shares s⟨D,i⟩ using his warrant
ϖD,i, as we shall explain presently. He then recovers M as follows.

If Λ = (A, ρ) is an LSSS for A, the attributes of D that satisfy A define a
subset [A]x of A’s rows and constants cx such that

∑
x cx[A]x = (1, 0, . . . , 0).

Having generated the U-share s⟨D,i⟩ = e(g1, g1)
λxe(H(D), g1)

ωx for each such x
(see below), D finds cx ∈ ZN and computes:

e(g1, g1)
s =

∏
x

(
e(g1, g1)

λxe(H(D), g1)
ωx
)cx

(5)

= e(g1, g1)
∑

x cxλxe(H(D), g1)
∑

x cxωx

M = CM/e(g1, g1)
s (6)

D generates the U-share for an open regular attribute i from ciphertexts in Eqns.
1 and 2 and his warrant ϖD,i. Let ρ(x) = i. Following DABE [8],

s⟨D,i⟩ = Y1,x · e(H(D), Y3,x)/e(ϖD,i, Y2,x) (7)

=
e(g1, g1)

λx+rxαρ(x)e(H(D), g
ωx+rxχρ(x)

1)

e(g
αρ(x)

1 H(D)χρ(x) , grx1)

= e(g1, g1)
λx · e(H(D), g1)

ωx .

For a delegated attribute δ where ρ(x) = δ, let Λj = (Aj , ρj) be the LSSS
for the sub-structure Aj replacing δ. D’s attributes satisfying Aj define a subset
[Aj]y of Aj ’s rows and constants cy ∈ ZN such that

∑
y cy[Aj]y = (1, 0, . . . , 0).

Having generated the U-share s⟨D,i⟩ = e(g1, g1)
λye(H(D), g1)

ωy for each such y,
D finds cy ∈ ZN and computes:

s⟨D,δ⟩ =
∏
y

(
e(g1, g1)

λye(H(D), g1)
ωy
)cy

(8)

= e(g1, g1)
∑

y cyλye(H(D), g1)
∑

y cyωy

= e(g1, g1)
λxe(H(D), g1)

ωx

For the attribute i associated with [Aj]y, if i is an open regular attribute,
D generates the U-share from ciphertexts in Eqn. 4 and his warrant ϖD,i. We

12 Peng Wang and Chinya Ravishankar

have:

s⟨D,i⟩ = Z1,y · e(H(D), Z3,y)/e(ϖD,i, Z2,y) (9)

= e(g1, g1)
λy · e(H(D), g1)

ωy .

If i is hidden, D generates s⟨D,i⟩ from ρ(y) = hC(CM ||i) as follows. If D holds
the hidden attributes c1, c2, . . . , ct, he holds the warrants {ϖD,ck |k = 1, . . . , t}
and IDs {ck|k = 1, . . . , t}. First, D computes hC(CM ||ck) for each ck. If there is
a match, he infers the warrant ϖD,i, and uses Eqn. 9 to generates the proper
U-share. Unless a decryptor already holds i’s ID, he learns nothing about which
hidden attribute was used by the encryptor. Delegated attributes within Aj are
handled recursively using Eqn. 8.

6 Security Analysis

We first prove that it is safe to release secret shares to authorities when no
delegation is allowed in HM-ABE, then we prove inductively that HM-ABE is
secure with an arbitrary number of recursive delegations.

6.1 Security Model

We fix the security parameter κ at the outset. We show the security of HM-ABE
by considering a series of games Gi between an adversary A and a challenger C.

In the boxed figure Game 1, A creates two messages M0 and M1. C picks
random bit β, encrypts Mβ , and sends it to A, who makes a guess β′ for β.

Definition 5 A, who wins the game if β′ = β, has the advantage Pr[β′ = β]− 1
2 .

Definition 6 A satisfies an access tree T for an encryption key s if A controls
a UID that satisfies T.

Definition 7 An encryption scheme is secure if all polynomial-time adversaries
have only a negligible advantage in its security game G.

6.2 Assumptions

Our proofs are based on a set of assumptions, and assume the inability of a
polynomial algorithm to distinguish between certain tuples (D, T1) and (D, T2)
with non-negligible advantage. We say that a polynomial-time algorithm A’s
advantage in distinguishing tuples (D, T1) and (D, T2) is

A = |Pr [A(D, T1) = 1]− Pr [A(D, T2) = 1]| (10)

We follow the group construction in Sec. 5.1. Below, we adapt the assumptions
in [8].
Assumption 1: Let T1 be a random generator of G, and T2, g1 be random
generators of Gp1 . No probabilistic polynomial-time algorithm A can distinguish

Hierarchical Policy Delegation in Multiple-Authority ABE 13

the tuples (D = {N,G,GT , e, g1}, T1) and (D, T2) with non-negligible advantage,
the probability being taken over the random choice of g1, T1, T2, and the random
bits consumed by A.

Assumption 2: Let g1, T1, X1 be random generators of Gp1 , X2 be a random
generator of Gp2 , g3 be a random generator of Gp3 , and T2 be a random gen-
erator of Gp1p2 . No probabilistic polynomial-time algorithm A can distinguish
between the two tuples (D = {N,G,GT , e, g1, g3, X1X2}, T1) and (D, T2) with
non-negligible advantage, the probability being taken over the random choice of
g1, g3, X1, X2, T1, T2, and the random bits consumed by A.

Assumption 3: Let g1, X1 be random generators of Gp1 , Y2 be a random
generator of Gp2 , X3, Y3 be random generators of Gp3 , T1 be a random generator
of Gp1p2 , and T2 be a random generator of Gp1p3 . No probabilistic polynomial-
time algorithm A can distinguish tuple (D = {N,G,GT , e, g1, X1X3, Y2Y3}, T1)
from tuple (D, T2) with non-negligible advantage, the probability being taken
over random choices of g1, g3, X1, X3, Y2, Y3, T1, T2, and the random bits
consumed by A.

Assumption 4: Let g1, g2, and g3 be random generators of Gp1 , Gp2 , and Gp3 ,
respectively. Let a, b, c, d be random numbers in ZN . Let T1 = e(g1, g1)

abc, and
let T2 be a random generator of GT . No probabilistic polynomial-time algorithm
A can distinguish tuples (D = {N,G,GT , e, g1, g2, g3, g

a
1 , g

b
1g

b
3, g

c
1, g

ac
1 gd3}, T1)

and (D, T2) with non-negligible advantage, the probability being taken over the
random choice of g1, g2, g3, a, b, c, T1, T2, and the random bits consumed by A.

6.3 Proof of Security

Let Gi denote the security game parameterized as i, and A(Gi) denote A’s ad-
vantage in game Gi. Our proof is based on the following security games.

GR DABE’s security game. Delegation forbidden. A(GR) is known to be negli-
gible [8].

GR′ Security game GR modified so C gives A all secret shares {λx, ωx} of at-
tribute ρ(x) controlled by corrupted authorities. The access structure con-
tains regular attributes only. Delegation forbidden.

GLn Security game of HM-ABE when the access tree is of n-level delegation.

Boxed figure Game 1 shows the general structure of these games. We first
prove that A(GR′) is negligible. We next show A(GL1) − A(GR′) is negligible,
so that A(GL1) is also negligible. We then prove by induction that A(GLn) is
negligible for any n > 1.

Proof that A(GR′) is negligible

Theorem 1 Under assumptions 1, 2, 3, every polynomial time adversary has
negligible advantage in GR′ .

14 Peng Wang and Chinya Ravishankar

We have two games G1, G2. If there is a polynomial-time adversary A such that
A(G1) − A(G2) = ϵ, we can use A to construct a polynomial-time challenger C with
advantage ϵ in breaking one of Assumptions 1–4.

Challenger C is given the tuple (D, T), which he uses to generate keys, ciphertexts and
other parameters to simulate a game. T is either T1 or T2, but not known to C, who
simulates G1 if T = T1, and G2 otherwise.

In the challenge phase, A sends two messages M0, M1 and an access structure he
cannot satisfy to C. C randomly selects β ∈ {0, 1}, encrypts Mβ under the access
structure and sends the encrypted Mβ back to A.

A guesses β with advantage Pr[β′ = β] − 1
2
. A’s advantage in the game is A(G1) if

T = T1, otherwise it is A(G2). Now C can use A to obtain advantage A(G1)−A(G2) = ϵ
in distinguish T1 and T2, and break one of Assumptions 1–4 with the advantage ϵ.

Proof 1: Proof overview of Lemma 2 to 6.

Proof. The boxed figure Game 1 shows the differences between GR and GR′ . We
enhance the proof of GR in [8] to prove that A(GR′) is negligible, even when
A is more powerful. The major technique we use is dual system encryption
which is a new proof technique based on the idea of semi-functional keys and
ciphertexts [14]. The security game GR′ is identical to the generic game in box
figure Game 1, except that the access structure A in the Challenge Phase uses
no delegated attributes. We define following games to prove A(GR′) is negligible.

GR′′ Identical to GR′ except that the random oracle maps UID to elements in
Gp1 , instead of G.

G0 Identical to GR′′ , except that the ciphertext for Mβ given to A is semi-
functional.

Gj,1 Mβ ’s ciphertext is semi-functional. The queried ϖUID,i are type-2 semi-
functional keys for the first j− 1 UIDs, and a type-1 semi-functional key for
the jth UID. Other ϖUID,i are normal.

Gj,2 The ciphertext is a semi-functional encryption of a random message. The
queried ϖUID,i are type-2 semi-functional keys for the first j UIDs. Other
ϖUID,i are normal.

Gfinal The ciphertext is a semi-functional encrypted randommessage. All queried
ϖUID,i are type-2 semi-functional keys.

We first prove that the differences between A(GR′) and A(GR′′), A(GR′′) and
A(G0), A(Gj−1,2) and A(Gj,1), A(Gj,1) and A(Gj,2), A(Gq,2) and A(Gfinal) are
all negligible. Since A(Gfinal) = 0, we prove A(GR′) is negligible. Due to space
limitation, we only show the proof of Lemma 6.

We give the overview of our proof for Lemma 2 to 6 in the box figure Proof.
1.

Lemma 2 Let there exist a polynomial time algorithm A with A(GR′)−A(GR′′) =
ϵ. We can then construct a polynomial time algorithm C with advantage ϵ in
breaking Assumption 1.

Hierarchical Policy Delegation in Multiple-Authority ABE 15

Lemma 3 Let there exists a polynomial time algorithm A with A(GR′′)−A(G0) =
ϵ. We can then construct a polynomial time algorithm C with advantage ϵ in
breaking Assumption 1.

Proof sketch. In the Setup Phase, C receives N , g1, T . Phase 1 proceeds as
in Game 1.

In the Challenge Phase, let B and B̄ denote the subset of rows in A corre-
sponding to attributes managed by corrupted authorities, and good authorities,
respectively. C constructs semi-functional ciphertext for B and B̄, exactly as in
Lemma 8 of [8]. C sends the resulting ciphertext and shares λx, ωx of [A]x ∈ B
to A.

Phase 2 proceeds as in Game 1. As Lemma 8 in [8] shows, the ciphertext is
randomly distributed. A obtains all shares from corrupt authorities and some
additional shares from good authorities in Phases 1 and 2. However, there is
at least one row [A]i controlled by a good authority, without which the space
spanned by the rows [A]j controlled by A cannot include (1, 0, . . . , 0), preventing
him from recovering the secret s. A can derive ωi if he controls all rows except for
[A]i in an authorized set of A. However, since shares of s and 0 are uncorrelated,
A cannot derive λi from ωi.

When T ∈ Gp1 , C simulates GR′ , and if T ∈ G, C will simulate G0 with prob-
ability negligibly close to 1. We conclude that C can use A to obtain advantage
negligibly close to 0 in breaking Assumption 1. �

Lemma 4 Let there exist a polynomial time algorithm A such that A(Gj−1,2)−
A(Gj,1) = ϵ. Then we can construct a polynomial time algorithm C with advan-
tage ϵ in breaking Assumption 1.

Lemma 5 Let there exist a polynomial time algorithm A such that A(Gj,1) −
A(Gj,2) = ϵ. Then we can construct a polynomial time algorithm C with advan-
tage ϵ in breaking Assumption 3.

Lemma 6 Let there exist a polynomial time algorithm A such that A(Gq,2) −
A(Gfinal) = ϵ. Then we can construct a polynomial time algorithm C with advan-
tage ϵ in breaking Assumption 4.

Sketch of Lemma 6’s proof: In the Setup phase, C receives N , g1, g2, g3, g
a
1 , g

b
1g

b
3,

gc1, g
ac
1 gd3 , T . C’s task is to determine whether T is a random value or e(g1, g1)

abc.
C chooses random values α′

i, y
′
i ∈ ZN and using the values it have been given,

generates public keys of good authorities as e(g1, g1)
αi = e(ga1 , g

b
1g

b
3)e(g1, g1)

α′
i ,

gχi

1 = ga1g
χ′
i

1 . Please note e(g1, g3) = 1.
Phase 1 proceeds as in Game 1. The warrants ϖUID,i are constructed as in

Lemma 11 of [8].
In the Challenge Phase, C picks a bit β, and computes CM = MβT . When

T = e(g1, g1)
abc, this ciphertext corresponds to encryption with the secret key

s = abc. We construct the triples (Y1,x, Y2,x, Y3,x) just as in [8].
Now, C must send to A shares λx, ωx of s = abc for attributes ρ(x) managed

by corrupted authorities. However, C does not know s = abc. As per the proof

16 Peng Wang and Chinya Ravishankar

in [8], C indirectly creates such λx and ωx, choosing random vectors u2, u3 with
0 as their first element, and computing λx = [A]x · u2 and ωx = [A]x · u3 for
corrupted authorities.

Phase 2 proceeds as in Game 1. As before, there is at least one row [A]i
controlled by a good authority, without which the span of the rows [A]j controlled
by A cannot include (1, 0, . . . , 0), preventing him from recovering the secret s.
A can derive ωi if he controls all rows except for [A]i in an authorized set of A.
However, since λi and ωi are uncorrelated, A cannot infer one from the other.

If T = e(g1, g1)
abc, C simulates Gq,2, and if T is a random value, C simulates

Gfinal. C can use A to obtain advantage ϵ in breaking assumption 4. �
From Lemma 2 to 6, we prove Theorem 1.

Lemma 7 If A cannot satisfy access tree T in GR′ , the probability of his obtain-
ing T’s root U-share is negligible.

Proof. By Theorem 1, if A cannot satisfy access tree T in GR′ , his advantage in
A(GR′) is negligible. By Definition 7, the encryption system which GR′ is based
on is hence secure. Hence, A only has negligible advantage in decrypting the
ciphertext, or equivalently, in obtaining the U-share of T’s root.

Proof that A(GLn) is negligible We show that A’s advantage in GL1 is negli-
gible, and proceed by induction. We define GL′

1
to prove A(GL1) is negligible. In

GL′
1
, the access structure may include delegated attributes, and 1-level delegation

is allowed. Unlike GL1 , A in GL′
1
gets secret shares of each attribute controlled

by corrupted authorities, regardless it is regular or delegated.

Lemma 8 Any polynomial time adversary A has only negligible advantage in
GL′

1
.

Proof. We first define GL′
1
as follows. Setup and Phase 1 in GL′

1
are exactly as in

boxed figure Game 1.
In the Challenge Phase, A creates a complete access structure A∗, which

includes the main access structure and all level-1 access sub-structures {Aj}. C
encrypts Mβ under A∗ and sends the resulting ciphertext to A. C also sends
shares λx, ωx of attributes managed by corrupted authorities to A. Phase 2 is
identical to that in Game 1.

Since A cannot satisfy A∗, he cannot satisfy its access tree T∗. By construc-
tion, T∗ uses 1-level delegation. Let T0 be the main access tree with access
subtrees eliminated. T0 uses no delegation. A fails to satisfy T∗ in two cases. In
the first case, A is unable to satisfy a leaf associated with a regular attribute on
T0, so that A still only has negligible advantage in game GR′ played with the
challenge access tree T0. Hence, A only has negligible advantage in GL′

1
. In the

second case, A satisfies all regular attributes in T0, but fails to satisfy a leaf on
some subtree Tδ of T∗. Let Tδ’s root be vδ. By Lemma 7, A’s advantage ϵ′ in
obtaining vδ’s U-share is negligible. If A cannot obtain vδ’s U-share, he cannot
satisfy T0, and A(GR′) = ϵ is negligible with the challenge access tree T0.

Hierarchical Policy Delegation in Multiple-Authority ABE 17

Let vδ and vδ, respectively, be the events that A can and cannot obtain vδ’s
U-share. We have Pr[vδ] = ϵ′, Pr[vδ] = 1− ϵ′ and Pr[β′ = β | vδ] ≤ 1. Now,

A(GL′
1
) = Pr[β′ = β]− 1

2

≤ (Pr[β′ = β | vδ] Pr[vδ] +Pr[β′ = β | vδ] Pr[vδ])−
1

2

≤
(
1

2
+ ϵ

)
(1− ϵ′) + 1 · ϵ′ − 1

2

=
1

2
ϵ′ + ϵ− ϵϵ′

So that A(GL′
1
) is negligible. The ≤ arises because A may fail to satisfy several

subtrees simultaneously.

Lemma 9 Any polynomial-time adversary has only negligible advantage in GL1
.

Proof. A obtains more information in GL′
1
than in in GL1 , so that A(GL′

1
) ≥

A(GL1).

Lemma 10 Any polynomial-time adversary has only negligible advantage in
GLn .

Proof. We first assume that A has only negligible advantage in GLn−1 . Setup and
Phase 1 in GLn

are exactly as in Game 1. The Challenge Phase proceeds as in
Game 1. The challenge access structure A∗ includes the main access structure
and all access sub-structures {Aj}. In addition to the ciphertext for Mβ , C sends
shares λx, ωx of attributes managed by corrupted authorities to A. Phase 2
proceeds as in Game 1. A outputs a guess β′ of β.

Since A cannot satisfy A∗, he cannot satisfy its access tree Tn, which uses
n-level delegation. Let Tn−1 represent the first n− 1 levels of delegation in Tn,
with the last delegation level eliminated. A fails to satisfy Tn in two cases. First,
a leaf associated with a regular attribute on Tn−1 is not satisfied, so that A
only has a negligible advantage in game GLn−1 with the challenge access tree
Tn−1. Hence, A only has a negligible advantage in GLn . In the second case, A
satisfies all regular attributes in Tn−1, but fails to satisfy a leaf in some subtree
Tδ corresponding to a delegated attribute δ occurring as a leaf in Tn−1. Let Tδ’s
root be vδ ∈ Tn−1.

By Lemma 7, A only has a negligible advantage ϵ′ in obtaining vδ’s U-share
that can be used to obtain T’s root’s U-share. When A cannot obtain vδ’s U-
share, he cannot satisfy the access tree Tn−1, and A(GLn−1) = ϵ is negligible
with the challenge access tree Tn−1.

18 Peng Wang and Chinya Ravishankar

We have Pr[vδ] = ϵ′, Pr[vδ] = 1− ϵ′ and Pr[β′ = β | vδ] ≤ 1. Now

A(GLn) = Pr[β′ = β]− 1

2

≤ (Pr[β′ = β | vδ] Pr[vδ] + Pr[β′ = β | vδ] · Pr[vδ])−
1

2

≤
(
1

2
+ ϵ

)
(1− ϵ′) + 1 · ϵ′ − 1

2

=
1

2
ϵ′ + ϵ− ϵϵ′

So that A(GLn) is negligible. Our final result follows.

Theorem 11 If Assumptions 1, 2, 3 hold, the HM-ABE encryption scheme is
secure against all polynomial time adversaries.

7 Related Work

Fuzzy Identity-Based Encryption (IBE), the first attribute based encryption
scheme, was proposed in [15]. Fuzzy IBE evolved from the IBE scheme in [16,17].
Being a precursor scheme, fuzzy IBE does not support very expressive access
policies.

Schemes such as KP-ABE [2] and CP-ABE [1] are more expressive. In KP-
ABE, each ciphertext is associated with a set of attributes. Each user’s private
key is associated with an access structure, which is an access tree where attributes
are leaves and internal nodes are threshold gates. A user can decrypt a ciphertext
when the ciphertext’s attributes satisfy the user’s access structure. In [1], KP-
ABE is transformed into CP-ABE. User private key is associated with attributes
and each ciphertext is associated with an access structure. A user can decrypt a
ciphertext if the attributes that the user has can satisfy the ciphertext’s access
structure.

Predicate encryption [18] is an ABE scheme achieving policy hiding. A user
evaluates whether he satisfies a ciphertext’s access policy, by decrypting the
ciphertext. Whether this decryption succeeds or fails, he does not learn what the
access policy is. However, this scheme does not allow expressive access policies.

The first multi-authority scheme, proposed in [9], recognizes k attribute au-
thorities (AA), each maintaining a disjoint attribute set. This scheme still re-
quires a trusted CA to combine secret shares to prevent collusion attacks. Unless
the CA or all AAs are compromised, the system is secure. Access structures in
this scheme are not very expressive. Chase and Chow later proposed an improved
scheme in [10] to remove the requirement of the CA.

This M-ABE scheme in [8] allows each ciphertext to be associated with
an LSSS-based access structure containing attributes from different authorities.
Each user has a global identifier. An authority generates a private key for an
(attribute, identity) pair. Users obtain private keys matching their attributes
and identities from authorities. The scheme is secure unless all authorities are

Hierarchical Policy Delegation in Multiple-Authority ABE 19

corrupted. Dual system encryption [14] [19] is used to prove the security of this
system.

Liu et al. improved DABE by removing the random oracle [13]. However,
their scheme introduces some additional trusted CAs involved in key generation.

LSSS [12] is used in [2, 7] to express access policies. LSSS-based access poli-
cies generalize previous access policies, and are regarded as the most expressive.
In [20], Frikken et al. proposed an ABE scheme with Hidden Policies and Hidden
Credentials, which hides encryptors’ policies from decryptors, and hides decryp-
tors’ credentials from encryptors.

Yu et al. introduced proxy-based attribute revocation scheme in [21]. The
authority uses proxy re-encryption [22] to delegate most work of attribute revo-
cation to a semi-trusted proxy server.

8 Conclusion

We have presented HM-ABE, a new hierarchical distributed attribute-based en-
cryption scheme, which permits policy delegation. Recursive policy delegation
is supported. Delegation allows more precise access policy to be built, and per-
mits authorities to hide their sensitive attributes by designating them as hidden
attributes, and not publishing the public keys. We prove our scheme is secure.

References

1. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE Symposium on Security and Privacy. (2007) 321–334

2. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: CCS. (2006) 89–98

3. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-
monotonic access structures. In: CCS. (2007) 195–203

4. Goyal, V., Jain, A., Pandey, O., Sahai, A.: Bounded ciphertext policy attribute
based encryption. In: ICALP. (2008) 579–591

5. Okamoto, T., Takashima, K.: Fully secure functional encryption with general re-
lations from the decisional linear assumption. In: CRYPTO. (2010) 191–208

6. Lewko, A.B., Waters, B.: Unbounded hibe and attribute-based encryption. In:
EUROCRYPT. (2011) 547–567

7. Waters, B.: Ciphertext-policy attribute-based encryption: An expressive, efficient,
and provably secure realization. In: PKC. (2011) 53–70

8. Lewko, A.B., Waters, B.: Decentralizing attribute-based encryption. In: EURO-
CRYPT. (2011) 568–588

9. Chase, M.: Multi-authority attribute based encryption. In: TCC. (2007) 515–534

10. Chase, M., Chow, S.S.M.: Improving privacy and security in multi-authority
attribute-based encryption. In: CCS. (2009) 121–130

11. Lin, H., Cao, Z., Liang, X., Shao, J.: Secure threshold multi authority attribute
based encryption without a central authority. Inf. Sci. 180 (2010) 2618–2632

12. Beimel, A.: Phd thesis, Israel Institute of Technology, Technion, Haifa, Israel (1996)

20 Peng Wang and Chinya Ravishankar

13. Liu, Z., Cao, Z., Huang, Q., Wong, D.S., Yuen, T.H.: Fully secure multi-authority
ciphertext-policy attribute-based encryption without random oracles. In: ES-
ORICS. (2011) 278–297

14. Waters, B.: Dual system encryption: Realizing fully secure ibe and hibe under
simple assumptions. In: CRYPTO. (2009) 619–636

15. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: EUROCRYPT. (2005)
457–473

16. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. SIAM
J. Comput. 32 (2003) 586–615

17. Shamir, A.: Identity-based cryptosystems and signature schemes. In: CRYPTO.
(1984) 47–53

18. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions,
polynomial equations, and inner products. In: EUROCRYPT. (2008) 146–162

19. Lewko, A.B., Waters, B.: New techniques for dual system encryption and fully
secure hibe with short ciphertexts. In: TCC. (2010) 455–479

20. Frikken, K., Atallah, M., Li, J.: Attribute-based access control with hidden policies
and hidden credentials. IEEE Trans. Comput. 55 (2006) 1259–1270

21. Yu, S., Wang, C., Ren, K., Lou, W.: Attribute based data sharing with attribute
revocation. In: ASIACCS. (2010) 261–270

22. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM Trans. Inf. Syst.
Secur. 9 (2006) 1–30

